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Analysis of permeability characteristics along rough-walled fractures
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Abstract: This study is conducted to calculate the permeability coefficient in a single fracture while taking the
true fracture geometry into consideration. The fracture geometry is measured using the confocal laser scanning
microscope (CLSM). The CLSM geometry data are used to reconstruct a fracture model for numerical analysis
using a homogenization analysis (HA) method. HA is a new type of perturbation theory developed to
characterize the behavior of a micro-inhomogeneous material that involves periodic microstructures. HA
permeability is calculated based on the local geometry and material properties (water viscosity in this case).
The results show that the permeability coefficients do not follow the theoretical relationship of the cubic law.

Résumé: Cette étude est entreprise pour calculer le coefficient de perméabilité dans une rupture simple tout en
prenant en compte la véritable géométrie de rupture. La géométrie de rupture est mesurée à l'aide du
microscope confocal de balayage de laser (CLSM). Les données de la géométrie de CLSM sont employées
pour reconstruire un modèle de rupture pour l'analyse numérique en utilisant une méthode de l'analyse
d'homogénéisation (AH). AH est un nouveau type de théorie de perturbation développé pour caractériser le
comportement d'un matériel micro-non homogène qui implique des microstructures périodiques. L'AH de
perméabilité est calculé a basé sur la géométrie locale et les propriétés matérielles (viscosité de l'eau dans ce
cas-ci). Les résultats prouvent que les coefficients de perméabilité ne suivent pas le rapport théorique de la loi
cubique.
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THEORY OF HOMOGENIZATION ANALYSIS METHOD
HA is here applied to the flow problem with periodic micro-structures (Sanches-Palencia 1980; Ichikawa et al.

1999). For this problem the Navier-Stokes equation is assumed for the local flow field.
We start with the following steady-state incompressible Navier-Stokes equations:
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where Vε
i is the velocity vector with the shearing viscosity η, Pε the pressure, Fi the body force vector, and Ωε f the

water flow region. The script ε implies that the functions Vε
i and Pε change rapidly in the small scale region because

of the microscale inhomogeneity.
Let us introduce the local coordinate system y which is related to the global system, x, by y=x/ε. Here, ε is a

microscale geometry parameter. Since we think the limiting case �ε → , the differentiation in Eq.(1) and (2) can be
changed into:
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Now asymptotic expansions for Vε
i and Pε are introduced as:
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where Vα
i(x,y) and Pα(x,y) (α=0,1,…) are Y-periodic functions such as Vα

i(x,y)= Vα
i(x,y+Y), Pα(x,y)= Pα(x,y+Y) with

the size of a unit cell Y.
Substituting Eqs. (3) and (4) into Eq. (1) and taking ε → 0 yield that the each term of ε must be zero:
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where Yf is the fluid flow region in the microscale domain.
Similarly Eq. (2) gives:
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Since the right hand side (RHS) of Eq. (6) is a function of only the global system x, we introduce a separation of
variables as:

( ) ( ) ( )

( ) ( ) ( )

�

�
�

� �
� � �

�

�
�

�

�
� � � � 


�

�
� � � � 


�

� �∂
= � �� �∂� �
� �∂

= � �� �∂� �

�
� �

�
� �

(9)

Here vk

i(y) and pk(y) (k = 1,2,3) are called the characteristic velocity and the characteristic pressure, respectively. Then
Eq. (6) is changed into a PDE of only the local system y:
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In the similar manner the mass conservation law (7) can be written as:
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Eqs. (10) and (11), called the ‘microscale equations’ (MiSE) for the water flow problem, can be solved under periodic
boundary conditions.

Now an averaging operation is introduced for Eq. (9)1 and we get the following Darcy’s law in the sense of HA:
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where �
���  is the averaged velocity in the unit cell (|Y|, the volume of the unit cell) and Kji is called the HA-

permeability. It can be shown that Kji is symmetrical and non-negatively definite. The same averaging is applied to Eq.
(8), then the second term vanishes because of the periodic boundary condition of V1

i, so the following ‘macroscale
equation’ (MaSE), called the HA-flow equation, is specified:
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The true pressure Pε  and velocity Vε
i are calculated in the first order approximation sense by Eq. (3) as
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In geotechnical engineering we commonly use the following empirical Darcy’s law:
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where �� ′�  is the average velocity in the classical sense (called the seepage velocity), H is the total head, P is the pore

pressure, ζ is the elevation head, g is the gravitational acceleration and ρ is the mass density of water which is
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assumed to be constant because of its incompressibility. Comparing this with Eqs. (13)-(15), we have the
correspondence:

� �
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ε ε′= ≅� � � (16)

so the HA-permeability Kij is related with the C-permeability K’ij as:

�
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Note that this C-permeability K’ij is specified by some experimental procedures. The validity of the HA-permeability
concept has been proved by several works (Ichikawa et al. 1999; Chae 2004a).

INPUT PARAMETERS FOR THE HOMOGENIZATION ANALYSIS

Fracture roughness
The specimens used for the HA are granites that have a single natural fracture. The fracture roughness is measured

using a confocal laser scanning microscope. Sample spacing is 2.5μm in both x-and y-directions. The highest
resolution in the z-direction is 0.05μm, which is more sensitive than the previous methods (Chae et al. 2004b).

The 3-D configuration of roughness as well as the 1-D roughness profile is measured for each specimen. The
resolutions in the x- and y-directions are fixed as 1,024 x 768 pixels (2.56 x 1.92 mm in area) and the resolution of z-
direction is 10 μm.

The Fourier spectral analysis is conducted to quantitatively identify roughness characteristics (Chae et al.  2004b).
After the spectral analysis and noise filtering is completed for all of the data for each specimen, a reconstruction of the
roughness geometry is performed using only the influential frequencies among the components (Fig. 1). The
reconstructed roughness profiles are used for the fracture models in the HA numerical simulation.

Figure 1. An example of roughness patterns that show both noises (black) and the smoothed roughness data (red).

Aperture variation dependent upon the uniaxial compression
The fracture apertures are also used as input parameters for the HA simulation. They are measured by the CLSM

while applying normal stress (Chae et al.  2003). Among all of the aperture data, three stress levels (10, 15 and 20
MPa)  are applied. The mechanical apertures are equal to the mean value of the measured apertures for each specimen
using the CLSM. The hydraulic apertures are calculated using an equation satisfying the cubic law (Zimmerman and
Bodvarsson 1996). The hydraulic conductivities are both calculated with the mechanical aperture, the measured
aperture by the CLSM, and the hydraulic aperture are also calculated from an equation based on the cubic law (Eq. 7).
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where k is intrinsic permeability coefficient, γ  is unit weight of water, �  is viscosity of water, ��  is hydraulic

aperture, and �  is length of specimen.



IAEG2006 Paper number 177

4

COMPUTATION OF PERMEABILITY USING THE HA UNDER VARIOUS
FRACTURE CONDITIONS

The 2-D fracture models are now constructed for the HA simulation. The computation is performed assuming a

temperature condition of 300K. The water viscosity, η  is equal to 0.8×10-3 Pa · sec and the mass density, ρ  is equal
to 0.99651g cm-3. The HA permeability characteristics are shown under various roughness and aperture conditions.
That is, under various types of observed roughness features the upper fracture wall is displaced at intervals of every 1
mm in the shearing direction. This shear displacement is introduced for five stages, which results in various aperture
values along the fracture. Permeability is calculated at every stage of the displacement.

An example of the fracture models are shown in Fig. 2. These models represent various roughness features and
aperture due to the displacement. Every model shows different geometrical features at each stage of the displacement.
The calculation results and the relationships between the square of the mean aperture, b2, and the calculated
permeability are shown in Fig. 3. It is found that the permeability coefficients are irregularly ranged from 10-4 to 10-1

cm/sec, while the coefficients of the previous parallel plate models are uniformly distributed in some range. This is
due to the complicated change of the aperture as increasing the shear displacement in the current models. In this figure
it is not possible to find any relationship, so the cubic law is not suitable for the rough fracture case (Chae et al.
2004a).

Figure 2. An example of fracture models showing various roughness and apertures on each stage. Exaggerated 50 times in vertical
direction.
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Figure 3. Relationship between permeability coefficients and aperture square.

CONCLUSION
Considering the change of aperture and roughness pattern simultaneously along a fracture, the permeability is

calculated by using the rough fracture models. The upper wall is assumed to be displaced by shearing in the five
stages. The calculation results show various changes of permeability which depend on the roughness patterns and
aperture values. It is understood that the cubic law is not appropriate for the fracture with rough walls. The irregular
distribution of aperture along a fracture may introduce a negative proportional relationship between the aperture and
the permeability even though the mean aperture becomes larger. This clearly proves that fracture permeability is very
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sensitive to the geometry of the roughness and the aperture of the fracture. The approach will be effectively applied to
the analysis of permeability characteristics as well as the fracture geometry in discontinuous fracture rock masses.
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