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Development of a method to assess runout distance of debris
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Abstract: In order to predict the runout distance of debris, this study performed a detailed field survey,
laboratory soil tests and analysis of runout distance at three pilot sites with different lithologies in Korea. The
purpose of the field survey was to acquire the geometric data on debris flow such as length, width, slope angle,
orientation, depth to failure plane or thickness of deposited debris, volume and flow trajectory of debris as well
as lithology. Laboratory soil tests were conducted to get physical and geotechnical properties of in-situ soil and
of the sliding material.

Based on the results of the field survey and of the laboratory tests, an artificial neural network approach was
used to assess the runout distance of debris. Because the factors affecting runout distance are too complex to
analyze one by one in a deterministic manner, a back analysis approach was used to characterize runout
distance based on the topographic and geologic properties gathered during the study. The training data for
runout distances were derived from 24 landslides that were not affected by adjacent landslides in natural
terrain. The input parameters used were: slope gradient, length of landslide, permeability, dry density and
porosity. Values were selected by the logistic regression analysis that had been utilized to develop landslide
probability. Using the artificial neural network method, it was possible to determine runout distance from two
models with the error rate of inference lower than 5% and 2%.

Résumé:. Afin de prévoir la distance de fin de bande des débris, cette étude a exécuté une enquête détaillée de
champ, des essais de sol de laboratoire et l'analyse de la distance de fin de bande à trois emplacements pilotes
avec différentes lithologies en Corée. Le but de l'enquête de champ était d'acquérir les données géométriques
sur l'écoulement de débris tel que la longueur, la largeur, l'angle de pente, l'orientation, la profondeur à l'avion
d'échec ou l'épaisseur de la trajectoire déposée de débris, de volume et d'écoulement des débris aussi bien que
la lithologie. Des essais de sol de laboratoire ont été effectués pour obtenir les propriétés physiques et
géotechniques du sol in-situ et du matériel coulissant.

Basé sur les résultats de l'enquête de champ et des essais en laboratoire, une approche artificielle de réseau
neurologique a été employée pour évaluer la distance de fin de bande des débris. Puisque les facteurs affectant
la distance de fin de bande sont trop complexes pour analyser un d'une façon déterministe, une approche arrière
d'analyse a été employée pour caractériser la distance de fin de bande basée sur les propriétés topographiques et
géologiques recueillies pendant l'étude. Les données de formation pour des distances de fin de bande ont été
dérivées de 24 éboulements qui n'ont pas été affectés par des éboulements adjacents dans le terrain normal. Les
paramètres d'entrée utilisés étaient : gradient de pente, longueur d'éboulement, perméabilité, densité sèche et
porosité. Des valeurs ont été choisies par l'analyse logistique de régression qui avait été utilisée pour
développer la probabilité d'éboulement. En utilisant la méthode artificielle de réseau neurologique, il était
possible de déterminer la distance de fin de bande de deux modèles avec le taux d'erreur de l'inférence plus bas
que 5% et 2%.
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INTRODUCTION
In Korea, most landslides are closely related to periods of intensive rainfall during the summer rainy season and

typhoon period.. The precipitation in the summer contributes over half of the mean annual precipitation and can be as
much as 1,200mm. The most important type of landslides in Korea are debris flows that comprise 90% of landslides
(Kim et al., 2003; Chae et al., 2004 a).

An accurate prediction of landslides contributes to the mitigation and prevention of landslide damage. However,
landslides do not always cause a large amount of damage. The runout distances of debris from landslides of a similar
size differ and vary dependent on the geomorphology of slopes and geologic conditions of the material comprising the
debris flow. Because the runout distance of debris is directly related to the magnitude of damage, it is necessary to
assess the runout distance of debris as part of the prediction of landslide risk.

The existing research on runout distance and the characteristics of debris flow fall largely into two groups namely
field survey or observation and laboratory models. Most of the field survey and observation studies record
measurements of rainfall, pore pressure, displacement of foundation and runout distance of debris and classification of
debris. They try to find a relationship between the geomorphologic characteristics, kind of sliding material and runout
distance of debris based on the analyses of results of transportation mechanisms, velocity and energy of debris (Suwa,
1988; Suwa and Sumaryono, 1995; Iverson, 1997; Sassa, 1998). However, the field observation and measurement
approach has difficulties because the studies need to identify the weighting value and the role of each factor related to
the transportation of debris because the factors are mixed in the field. To help overcome some of the problems of the
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field survey, laboratory based tests can be undertaken to understand the characteristics and distance over which debris
transportation can occur. The laboratory tests usually use large or intermediate sized flumes filled with soils of various
characteristics and analyze the flow characteristics of debris runout for different combinations of rainfall intensity and
slope angles (Moriwaki, 1987; Okura et al., 2002; Wang and Sassa, 2003; Moriwaki et al., 2004).

This study developed a method to assess the runout distance of debris on natural terrain. The runout distances of
three debris flows with different lithologies were measured in the field. The selected flows were chosen to ensure that
the debris flows that were not affected by other nearby debris flows and that the measurements taken accurately
reflected the distance of debris transportation for a single landslide. The field measurement results together with the
geomorphology and geotechnical properties of debris were used to determine optimal models for assessment of runout
distance of debris using an artificial neural network.

METHODOLOGY OF THE STUDY

Study area
The sites selected needed to be in areas where recent debris flows had occurred and where there was an obvious

trace of debris transportation. The sites also needed to have different physical properties of debris. Based on the site
selection criteria, three pilot sites in the Sacheon, Macheon and Gabuk areas were chosen for the study.

The Sacheon area was selected as a pilot site to identify the characteristics of flows and runout distance in an area
composed of sandy material with gentle slopes and rounded topography. The soils typically comprise equigranular
sand formed from the decomposition and weathering of granite. The area has a large number of debris flows which
occurred during typhoon ‘Rusa’ in 2002. The area was also damaged by an extensive fire in the spring of 2000.

The Macheon area was chosen as a pilot site to analyze the characteristics of flows and transportation of debris
composed of a mixture of grain sizes, ranging from large corestones to sand and silt, down steep mountain slopes. The
area is composed of gabbro which forms mountainous steep slopes. The corestones are well developed in the
weathered soil layers and the area has large debris flows that occurred during the typhoon ‘Maemi’ in 2003.

The Gabuk area is formed from gneiss and has extensive debris flows which occurred during the typhoon ‘Maemi’
in 2003. The area still has the traces of debris deposition on the bottom of mountain slopes.

Detailed field survey and laboratory soil tests
In order to accurately measure the runout distance of debris and to analyze the transportation mechanism from the

head of a debris flow it was important to trace the progress of a single debris flow that had not been affected by other
adjacent debris flows. For this reason, the authors only selected debris flows for the study that had developed as a
single landslide, without interference from adjacent debris flows and that did not converge with other debris flows.

A detailed field survey covering a total area of 99km2 was conducted for the three pilot sites to investigate the
geology and geometry of debris flows, to track the debris transportation and measure runout distance and  to collect
soil samples. The geometry of the whole debris flow was measured from the head of the flow to its toe. The
measurements recorded were: change of slope angle, width, orientation, and erosion depth or deposition thickness.
These measurements were taken along longitudinal and  lateral cross sections across the flows. From these data it was
possible to identify geometric changes in the shape of the debris flows and characteristics of debris transportation
dependent on geomorphologic and geologic conditions.

Thirteen different soil laboratory tests were performed to understand the relationship between the geotechnical
properties of the debris flow and runout distances. Soil samples were collected as undisturbed samples from the
undisturbed soil layer and as disturbed samples in the soil deposited near the toe of debris flow. An in-situ density test
was also conducted to determine the density of soil layers composed of larger rock fragments and boulders (Kim et al.,
2004).

An assessment of the runout distance of debris, based on the field survey and the laboratory soil tests, cannot be
made using a deterministic method because the relationship between the data is very complex. Therefore, the study
applied an artificial neural network method to assess the runout distance of debris. The artificial neural network
method is a useful method to identify the relationship between different data and factors. The data from the detailed
field survey and the laboratory tests were analyzed to find inter-relationships between the transportation
characteristics, the runout distance of debris, geomorphology and geologic conditions using the artificial neural
network.

ASSESSMENT OF RUNOUT DISTANCE OF DEBRIS USING THE ARTIFICIAL
NEURAL NETWORK

In order to select optimal models for assessment of runout distance of debris, twenty two out of a total of twenty
four debris flows were used for the inference simulation by the artificial neural network.

Analyses of model structures
The analyses to select optimal artificial neural network models used six input factors known to influence the

transportation of debris. The six input factors were the change in rate of slope angle, permeability coefficient, dry
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density, porosity, proportion of sand and volume of debris. The output factor was the runout distance of the debris
flow. The evaluation computations were performed with the following four groups.

Group A: changing rate of slope angles, permeability coefficient, dry density, porosity, volume of debris
Group B: changing rate of slope angles, permeability coefficient, dry density, porosity, volume of debris, sand

proportion
Group C: changing rate of slope angles, permeability coefficient, dry density, porosity, sand proportion
Group D: changing rate of slope angles, permeability coefficient, dry density, porosity

The learning theory used a multi-layer back propagation theory which is composed of an input layer, hidden layer
and output layer. The artificial neural network has large changes of learning reliability and inference capacity
dependent on the structure of the input layer, output layer and hidden layer. It is also influenced by the learning factors
such as learning constant, momentum constant and the number of learning. Therefore, this study performed the
learning with values for the learning constant of 0.6 and 0.9 and fixing the momentum constant as 0.7. The model
structure changes with the number of hidden layers and the number of layer items varied between two and four.

Table 1 shows the simulation models used to find optimal artificial neural networks. The number of items of input
layer was changed from four to six on each group. The output layer, the runout distance of debris, was fixed as one.
The structure of the hidden layer was set up as two layers and three layers.

Table 1. Structures of test models and learning constants

GROUP Model
No.

Input
layer

Hidden layer Output
layer

Learning
constant

Momentum
constant

System
error

1 5 2-2-2 1 0.6 0.7 0.94
2 5 3-3 1 0.6 0.7 0.79
3 5 3-3-3 1 0.6 0.7 0.54
4 5 4-4 1 0.6 0.7 0.14

A

5 5 4-4-4 1 0.6 0.7 0.27
6 6 2-2-2 1 0.6 0.7 2.14
7 6 3-3 1 0.6 0.7 0.59
8 6 3-3-3 1 0.6 0.7 0.92
9 6 4-4 1 0.6 0.7 0.89

B

10 6 4-4-4 1 0.6 0.7 0.19
11 5 3-3 1 0.6 0.7 0.97
12 5 2-2-2 1 0.6 0.7 2.64
13 5 4-4 1 0.6 0.7 1.36
14 5 4-4-4 1 0.6 0.7 4.22
15 5 2-2 1 0.6 0.7 2.04
16 5 3-3-3 1 0.9 0.7 1.53
17 5 2-2 1 0.9 0.7 2.98
18 5 4-4 1 0.9 0.7 1.14

C

19 5 3-3 1 0.9 0.7 0.99
20 4 3-3-3 1 0.6 0.7 2.54
21 4 3-3 1 0.6 0.7 1.48
22 4 2-2-2 1 0.6 0.7 2.07
23 4 4-4 1 0.6 0.7 0.51
24 4 3-3 1 0.9 0.7 1.48
25 4 2-2-2 1 0.9 0.7 1.63
26 4 2-2 1 0.9 0.7 1.91
27 4 4-4 1 0.9 0.7 0.67

D

28 4 3-3-3 1 0.9 0.7 2.57

Analyses of the computation results
In order to verify the learning reliability, the runout distance of the debris flow was inferred for the twenty four

debris flows used to train the neural network. The average error rate of inference, Pavr., was calculated as

�

� �

��� �
�

� �
� =

= �

���
�

� �
�

	 	
�

	
−

= ×

where, Rm is the measured runout distance, Ri is the inferred runout distance, and n is the number of data for the
inference. The trend of convergence was classified as “good” where the average error rate of inference was lower than
20%, and classified as “poor” when it was between 20-50%, and “divergent” when higher than 50%.
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The learning results of a total of twenty eight artificial neural network models are shown in table 2. In the case of
Group A, model numbers 4 and 5 have good inference results with low average error rate of inference. The model
number 10 of the Group B also shows good inference result with the average error rate of inference as 3.7%. For
Groups C and D, the model numbers 18, 23 and 27 have relatively good inference results. The results show that the
good models have two and three hidden layers and four items of each hidden layer. The higher average error rates of
inferences for Groups C and D that those of Groups A and B imply that the volume of debris influences the runout
distance of debris. These results need from further studies.

Table 2. Learning results of the test models

GROUP Model No. No. of learning iteration Trend of convergence Average error rate of
inference (%)

1 146094 Poor 22.8

2 304276 Poor 20.4

3 49420 Good 15.4

4 518334 Good 2.6

A

5 391032 Good 6.9

6 192089 Divergent 62.4

7 127215 Good 13.9

8 112186 Good 13.9

9 361525 Good 12.0

B

10 149333 Good 3.7

11 261637 Poor 24.9

12 124617 Divergent 77.9

13 74507 Poor 29.8

14 127788 Divergent 111.9

15 17761 Divergent 57.9

16 63566 Poor 39.6

17 80564 Divergent 52.7

18 101319 Good 18.6

C

19 266463 Poor 25.4

20 121016 Divergent 71.7

21 85015 Poor 36.4

22 24445 Poor 48.3

23 293607 Good 15.9

24 69300 Poor 34.4

25 196809 Poor 23.1

26 207457 Poor 48.0

27 323226 Good 14.3

D

28 64818 Divergent 72.3

Tables 3 and 4 show the inference results of model numbers 4 and 5 that have the average error rates of inferences
lower than 10% among the ten models of good inference results. Because the error rate of inference on each debris
flow also has lower value as much as 10% the models are evaluated as excellent models to predict the runout distance
of debris. However, in the case of model numbers 18, 23 and 27, they have large differences of error rates of
inferences on the debris flows, although the average error rates of inferences are lower than 20%. It is thought to be
due to small data number of the analyzed debris flows as 24. Therefore, the more number of debris flows and various
test models are needed to draw more accurate inference models in the further studies.
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Table 3. Inference results of the model 4

Landslide ID
Changing
rate of dip

angle

Permeability
coefficient
(cm/sec)

Dry
density
(g/cm3)

Porosity
(%)

Volume
(m3)

Length
(m)

*measured

Length
(m)

*inferred

Error rate of
inference

(%)
KR-73-18 0.278 0.0210 1.38 81.00 245.2 100 101.46 1.46
KR-73-20 0.452 0.0240 1.35 74.80 103.2 47 47.12 0.26
KR-84-01 0.321 0.0224 1.39 85.00 130.6 43 43.82 1.90
KR-84-02 0.364 0.0138 1.52 74.70 16.6 39 36.94 5.29
GY-72-01 0.581 0.0053 1.31 68.62 252.0 74 80.00 8.11
GY-72-02 0.490 0.0135 1.41 69.62 323.4 132 129.46 1.92
GY-72-03 0.496 0.0155 1.33 67.03 256.7 139 141.18 1.57
GY-81-01 0.438 0.0035 1.49 74.52 653.1 305 297.88 2.33
GY-81-02 0.369 0.0076 1.41 76.77 153.2 270.5 269.16 0.49
MP-79-02 0.481 0.0034 1.25 83.17 1320.5 168 181.97 8.32
WB-27-01 0.587 0.0337 1.51 73.71 301.5 270 270.76 0.28
WB-36-01 0.362 0.0136 1.38 61.45 1401.0 168 175.75 4.62
WB-36-02 0.445 0.0053 1.16 64.72 1400.2 197 200.26 1.65
WB-37-01 0.547 0.0400 1.26 69.72 1238.7 322 318.21 1.18
WB-37-02 0.475 0.0030 1.22 68.65 3012.6 175 173.47 0.87
WB-46-01 0.528 0.1208 1.07 71.84 4003.7 483 488.72 1.19
WB-46-02 0.371 0.0504 1.07 69.52 1690.5 297 299.53 0.85
WB-46-03 0.402 0.0146 1.19 65.46 666.6 299 303.21 1.41
WB-46-04 0.402 0.0406 1.28 67.73 485.9 64 67.11 4.85
WB-46-05 0.544 0.0474 1.25 69.91 2240.5 491 491.32 0.07
WB-46-06 0.367 0.0390 1.28 70.58 426.5 56.5 49.62 12.18
WB-47-01 0.370 0.0075 1.29 64.77 870.9 244 240.33 1.50
WB-47-02 0.318 0.0152 1.26 64.17 5822.9 333 335.11 0.63
WB-47-03 0.582 0.0337 1.02 71.15 630.4 223 223.19 0.09

Table 4. Inference results of the model 5

Landslide ID
Changing
rate of dip

angle

Permeability
coefficient
(cm/sec)

Dry
density
(g/cm3)

Porosity
(%)

Volume
(m3)

Length
(m)

*measured

Length
(m)

*inferred

Error rate of
inference

(%)
KR-73-18 0.278 0.0210 1.38 81.00 245.2 100 88.81 11.19 
KR-73-20 0.452 0.0240 1.35 74.80 103.2 47 44.48 5.36 
KR-84-01 0.321 0.0224 1.39 85.00 130.6 43 47.05 9.43 
KR-84-02 0.364 0.0138 1.52 74.70 16.6 39 45.26 16.06 
GY-72-01 0.581 0.0053 1.31 68.62 252.0 74 63.09 14.74 
GY-72-02 0.490 0.0135 1.41 69.62 323.4 132 118.87 9.95 
GY-72-03 0.496 0.0155 1.33 67.03 256.7 139 126.30 9.14 
GY-81-01 0.438 0.0035 1.49 74.52 653.1 305 276.71 9.27 
GY-81-02 0.369 0.0076 1.41 76.77 153.2 270.5 276.77 2.32 
MP-79-02 0.481 0.0034 1.25 83.17 1320.5 168 149.29 11.14 
WB-27-01 0.587 0.0337 1.51 73.71 301.5 270 272.03 0.75 
WB-36-01 0.362 0.0136 1.38 61.45 1401.0 168 154.12 8.26 
WB-36-02 0.445 0.0053 1.16 64.72 1400.2 197 181.73 7.75 
WB-37-01 0.547 0.0400 1.26 69.72 1238.7 322 319.29 0.84 
WB-37-02 0.475 0.0030 1.22 68.65 3012.6 175 174.68 0.18 
WB-46-01 0.528 0.1208 1.07 71.84 4003.7 483 482.21 0.16 
WB-46-02 0.371 0.0504 1.07 69.52 1690.5 297 293.30 1.25 
WB-46-03 0.402 0.0146 1.19 65.46 666.6 299 276.57 7.50 
WB-46-04 0.402 0.0406 1.28 67.73 485.9 64 67.13 4.88 
WB-46-05 0.544 0.0474 1.25 69.91 2240.5 491 490.93 0.01 
WB-46-06 0.367 0.0390 1.28 70.58 426.5 56.5 50.52 10.58 
WB-47-01 0.370 0.0075 1.29 64.77 870.9 244 276.78 13.43 
WB-47-02 0.318 0.0152 1.26 64.17 5822.9 333 332.79 0.06 
WB-47-03 0.582 0.0337 1.02 71.15 630.4 223 247.32 10.91 

DISCUSSION AND CONCLUSIONS
This study has suggested a method to assess the runout distance of debris flow on natural terrain using the artificial

neural network. The analysis of artificial neural network was performed using twenty four debris flows. The input data
for each debris flow were changing rate of slope angles, permeability coefficient, dry density, porosity, volume of
debris and sand proportion.

The analyses results of the artificial neural network were determined using a small number of data. However, there
was a limitation to acquire enough data to satisfy the reliability of analysis because this study had a premise to select
debris flows without interference of other debris flows. Considered with the limitation of data acquisition, most of the
error rates of inferences were lower than 10%. The results can be considered as good learning reliabilities. However,
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further studies based on a larger number of debris flows and test models are needed to draw more accurate inference
models.

Corresponding author: CHAE, Byung-Gon, Korea Institute of Geoscicences and Mineral Resources (KIGAM), email :
bgchae@kigam.re.kr
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